

第一节 钻井构造研究

第二节 地震构造研究

第三节 地层倾角测井构造研究

第四节 平衡剖面构造研究

地层产状示意图----示走向和倾向的关系

褶皱产状示意图

①褶皱枢纽(枢纽线):同 一褶曲面上最大弯曲点的连 线。

②轴面(枢纽面):连续褶 曲中各层的枢纽线构成的面 (曲面或平面都可以)。

③脊线:同一褶曲面上的最 高点的连线。

断面构造图的编制与应用

井下地层重复的另外的情况

井下地层重复序列的不同情况

2) 在短距离内,同层厚度突变

3) 在近距离内,标准层的海拔高程相差大

4) 石油性质变化

• 由于断层的切割, 百 一油层成为互不连通 的断块。各断块中的 油气是在不同地球化 学条件下聚集并保存 起来的,因而石油性 质出现明显差异。

5) 折算压力和油水界面的差异

折算压力:为了消除构造 因素的影响,将已测出的 油层各点的实测压力值, 按静液柱关系折算到同一 基准面上的压力。位于同 一压力系统的不同位置的 油层, 折算压力相同。

断层在倾角矢量图上的反映(据 Schlumberger, 1970)

• 在单井剖面上确定了断点,只能说明钻遇了断 层,还不能确切掌握整条断层面特征。在多条断 层地区,每口井都钻遇了几条断层,哪些断点属 于同一条断层,几条断层之间的关系如何,这些 都需要对断点进行研究。把属于同一条断层的各 个断点联系起来,全面研究整条断层的特征,这 项工作称为断点组合。

①各井钻遇的同一条断层的断点,其断层性质应该一致,断层面产状和铅直断距应大体一致或有规律地变化;

- ②组合起来的断层,同一盘的地层厚度不能出现突 然变化;
- ③断点附近的地层界线,其升降幅度与铅直断距要 基本符合,各井钻遇的断缺层位应大体一致或有 规律地变化;

④断层两盘的地层产状要符合构造变化的总趋势。

(1)作构造剖面图组合断点

•断裂切割作用把一个完整构造分割成许多断块。在 每个断块内(即断层面的一侧),同一地层界面的高低 关系有明显不同,地层厚度也可能突变。因此应用 各井的分层数据、断点资料做构造剖面图,分析各 个地层界面的高低关系和厚度变化情况,一般能够 把同一条断层的各个断点组合起来。

可以表现一条断层的倾向、倾角、走向、断距及分布范围。不同的断层,其断层面等值线的变化趋势则是不同的。先在远离复杂区的单断点区编制断层面等值线图,获得该断层的基本要素后,再由已知的走向、倾向、倾角、落差等,逐渐向复杂区延伸,把多断点区分开,进而做出各条断层的断层面等值线图。

(3) 综合分析

- 在地下构造复杂的地区,井下断点多,断点组合 往往具多解性,需要综合分析各项资料,互相验 证,选出较合理的断点组合方案。
- 首先,断层面等值线图、构造剖面图和构造草图 要互相验证,同时参考地震资料所提供的区域构 造特征和分布模式,若有矛盾,查明原因,调整 断点组合方案,直到前述各项原则与各种构造图 件互相吻合为止。
- 只要有条件,应尽量利用地层流体性质、油气水 分布关系和压力恢复曲线特征来验证所组合成的 断层。

1、资料准备 1) 井位图 2) 井口海拔数据 3) 各井分层数据、岩性、接触关系等 4) 各井含油、气井段数据 5) 各井断层数据(断点位置、断层落差位)

2、剖面位置选择

- 1) 剖面线应尽量垂直或平行于地层走向。
- 2) 应尽可能穿过更多的井,便于提高剖面的可靠程度。
- 3)尽量均匀地分布于油田构造上,便于全面了解地下构造特征。

3、剖面绘制方法

✓井底位置要校正
✓井位移动后要校正
✓井斜要校正

2) 标井口位置,根据地形高程画地形线

1) 画剖面线,标出海拔零线

- 3) 根据井斜资料, 画校正后的井身线; 并标上地层界线、标准层、断点等
- 4)将各井相同层的顶、底界线连成平滑的线,把同一断层点连成断层线5)注明图件要素(图名、比例尺、剖面方向、制图日期、制图单位、制图人

• 断面构造图又称断层面等高线图,它是以等高线 表示断层面起伏形态的图件。编制断层构造图的 原始资料是各井属同一断层的断点的标高和井位 图。作图一般用三角网法,有时也用剖面法。断 面构造图与油层构造等值线图重叠,把相同数值 的等高线的交点连接起来,即得到构造图上断层 线的位置。

图 4-10 编制断层面图及确定含油层顶、底面与断层面交线示例

 为了提高地质剖面图的精度,必须充分利和剖面 附近的井的资料,因此就需要把这些邻近剖面的 井人为移到剖面线上去,这一工作被称做井位校 正。

情况1:

TZE UNIVED

剖面线垂直或斜交地层走向 井沿地层走向投影到剖面线 上,校正前后井位标高不变。

情况2:

剖面线平行于地层走向 井点沿地层倾向投影时,需要进 行标高校正。x=L tg θ 2井沿地层下倾方向投影 h'=h+x 3井沿地层上倾方向投影 h'=h-x

油气田构造图的编制

•1、选择制图标准层:编制构造图的实质上是 以等高线来描绘标准层界面对于基准面的起 伏特征。通常选择油层邻近的标准层为制图 标准层, 描述其顶界或底界面的起伏特征。 通常选择海平面为制图基准层,海平面以上 为负。

英南2号局部构造T8-3反射层构造图

如果是斜井需要进行井斜校正

作图时采用地下井位和铅垂深度

求斜井水平总位移L及方位角β

求井斜井段的铅直深度 h

- 1、作水平线代表海平面
- 2、引海平面的垂线代表 直井柱
- 3、根据井斜角和斜井长 度,从井口依次逐渐连 续地作出斜井段,直到 制图标准层为止,将各 井段向通过井口的铅直 线作垂直投影,求出总 的铅直井深H

沿一条测线进行观测,获得的地下反射点,这种 观测方法叫二维地震测量;

三维地震则是沿线距较小的测线,进行面积观测,得到的地下反射点,有规律地分布在一定面积内。以三维地震资料进行数字处理后,可以得到地下地质构造在三维空间里的特征。

钻井资料收集

• 工区内所有井的 井位坐标,分层数 据,录井油气显示 情况,钻井取心资 料, 完钻井深, 井 斜数据, 岩性剖 面, 泥浆槽面油气 显示情况, 气测资 料等。

测并资料

做构造解释时,需要的测井数据有:声波、 自然电位、2.5m底部梯度电阻率,1:200综 合测井图(用于合成记录环境校正分析), 测井成果解释表。如果做储层预测,还要补 充的数据有:微电极、侧向、感应、自然伽 马、中子伽马、密度、井径等曲线。

• 野外放炮可以得到地震记录,这种记录为 野外地震记录,将野外地震记录经过数字处 理,就得到野外时间剖面。设计一些反射界 面,包括界面的埋藏深度、反射系数等,通 过计算可以得到地震记录,这种记录叫做合 成地震记录。根据声波测井资料计算合成地 震记录,可以确定反射层的地质层位,研究 地下构造及油气藏特征。

安36并人工合成地震记录

安62并人工合成地震记录

对18口有声波测井资料的井进行了合成记录标定

时间剖面的对比解释

时间剖面的对比解释

时间剖面的对比解释

构造图的编制

小十個円十40 十年時明火レース心ます 小阪回行起国

完钻之后测地层倾角,解决地层沉积问题;构造问题等 地球科学学院 3RG 尹太举 2009

1. 四条微聚焦电阻率(或电导率)测井曲线(R R₂、R₃、R₄)。地层倾角测井仪上有四个贴井壁的 极板,极板上都嵌有微聚焦电极系,可测出四条 微聚焦电阻率测井曲线。通过曲线对比可确定岩 层层面上四个点M₁、M₂、M₃、M₄沿井轴方向的高度 Z₁、Z₂、Z₃、Z₄。

2. 两条井径曲线(d₁₃、d₂₄)。分别由 I、III极 板和 II、IV极板组成两套井径测量装置。当井径 变化时,四个极板产生横向位移,通过机械传动 装置改变电位计的电阻用来指示 I、III极板方向 与 II、IV极板方向的井径d₁₃与d₂₄的大小。

3. **I** 号极板方位角曲线(µ)。用磁针罗盘测 I 号极板的方位角。

4. 井斜角(δ)与I号极板相对方位角曲线
(β)。井斜角就是井轴与铅垂线间的夹角。用
弧形电位器及铅锤来确定。

一般情况下,利用1口井的一般测井资料很难 判断地下构造类型、分析有无断层、确定断层性 质和断面要素。

但是,利用1口井的地层倾角测井资料,可以 解决以下问题。

- 1、确定井孔剖面的地层产状
- 2、判断地下构造的偏移方向
- 3、褶皱构造的识别方法

地层倾角资料的矢量表示方法

矢量图

1800 倾角矢量图像的分类 绿模式: 反映构造倾角 红模式:构造和沉积现象 蓝模式: 古水流方向 1810 杂乱模式(空白模式):反 映断层破碎带 粗线模式: 倾角变化趋势 1820 细色模式: 倾向不变的相连

细色模式 表示倾向不变的地层段

深度增加,地层倾角变大

TILE UNIVERSITY					
AT 10 3.	倾角矢量图(*) 10 20 30 40			层理剖面	层理类型
4					水平或 平行层理
					波状层理
		1111			单斜层理
				1]]]	前积波状层理
					波状交错层理
	/* **				交错层理
	· • • • •			XX	槽状层理
		•			块状不显层理
	•	,			递变层理

施密特图和方位频率图

地层在高能环境下沉积时,在地层倾角矢量
 图上不容易鉴别出构造倾角的情况下,就采
 用施密特图来分析。

▲ 以同心圆表示地层倾角,
 最外一圈为0°,向内增大;
 ▲ 用坐标和四个象限表示
 地层倾斜方位角;

UNIV 360° 30° 60° 90° 120° 将真倾角与深 1200 度的关系曲线沿地 层对比剖面线的方 1250 位换算成视倾角与 1300 深度的关系并且用 并深(m) 与水平线的夹角为 1350 视倾角的倾斜杠来 形象表示,称为杆 1400 状图 1450 地球科学学院 3RG 尹太举 2009

不考虑倾角变化、 专门反映地层倾斜 方位角随深度变化 的图件。规定零度 方位(正北)放在图 的中央。与矢量图 配合,能直观地、 迅速地确定地层的 倾斜方位角。

1、对称背斜

钻遇对称背斜轴部的矢量图

轴面近于直立, 两翼 倾角相等、倾向相反。 ● 井眼穿过背斜顶部: 测得地层倾角很小,倾斜 方位角也较乱。 ● 井眼钻遇背斜一翼: 矢量图呈绿模式(与单斜 显示相同)。两翼分别钻 井,矢量图在同一岩层倾 向相反(相背)。

小刈桃月粉

Z

特点:轴面倾斜,两 翼倾角不等且倾向相反。 ◎上部倾斜段(缓翼地 层)---绿模式; ◎ 接近脊面--蓝模式, 脊面处倾角接近0° ◎ 离开轴面向陡翼地层 过渡---红模式 ◎ 下部倾斜段(陡翼地 层)--绿模式。

特点:轴面倾斜很大, 两翼倾向相同,下 翼倾角比上翼大.

• 穿过轴面的井眼: 矢量图呈现:

绿-蓝-红-绿模式

• 与非对称背斜差异?

剖面

S.P. 曲线

直倾斜角

4、平卧褶曲

特点:
 轴面接近水平,
 上下两翼地层倾向
 相反或接近相反

• 矢量图特征:

平卧褶曲倾角矢量特征

红--蓝模式(倾向相反)。

• 以轴面为中心,向上向下地层重复(对称)出现。

E UNIV

- 单纯用矢量图判断褶曲形
 态,有多解性,必须结合
 地质资料及测井曲线进行
 综合分析,力求作出正确
 的判断。
- 单斜地层与对称背斜或
 对称向斜一翼--矢量图相
 似
- 倒转褶曲、平卧褶曲与
 非对称背斜---矢量图相似

利用井段产状统计成果判断褶曲类型

矢量的井段产状统计成果图有五种:

地球科学学院 3RG 尹太举 2009

构造部位

倾向相近

南北向视倾角与 深度关系图上: 平均倾角0°---构造南北走向上 无倾没。

A THE UNIVERSITY

两翼方向相反,倾角相似

、 倾没褶曲 (不对称)

● 倾角-倾斜方 位角关系图: 呈马蹄形

南北向视倾角
 与深度关系图
 平均倾角≠0°
 且不随深度而变
 化一向北倾没的
 一致性。

倾没褶皱(据Bengtson, 1981)

平衡剖面法恢复

•平衡剖面: 狭义上指构造发育剖面

- 平衡剖面原理: 在垂直构造走向的剖面上, 地层长度和面积(2D) 是均衡的。
- 平衡剖面技术:利用数学手段对盆地构造发育史进行正演和反演模拟,再现地下构造的原始几何形态。是计算机技术和地震解释的较完美结合"。

- 经典的平衡剖面从几何学角度提出了3条剖 面恢复的基本原则
- 一是(体积)面积不变原则;
- 二是岩层厚度不变原则;
- 三是剖面中各标志层的长度一致原则

现金构造形态

以前的构造形态 ^{地球科学学院} 3RG 尹太举 2009

平衡剖面用于对盆地构造进行恢复 ^{地球科学学院} 3RG 尹太举 2009

地下断层构造形式

图 4-35 断层分类示意图

账目的左星性征

图 4.6.2 逆断法

图 4.6.3 有断裂破碎带的断层

图 4.6.4 旋转断层

图 4.6.6 正断层

图 4.6.7 逆断层

图 4.6.8 逆断层

图 4.6.10 滚动断层,断面与层面倾向相反

断层形成时期和发育历史的研究

 一次性(后生)断裂活动形成的断层,其形成期: 根据被它切割的地层、岩体的时代关系来确定的。
 断层总是形成于被错断的最新一套地层时代之后。

✓同同生断层及其活动时期: 同生断层---指沉积盆地发育过程中,与沉降、 沉积过程同时发生、发育的断层。 同生断层的特征① 地层厚度: 下降盘明显增 大, ② 落差: 随深度 同生断层的活动时期: 可根据断层两侧同层厚度变 增加而增大。 化研究; 活动强度: 可用生长指表征:

表4-1 断层两盘同层厚度对比表 (转引陈立官, 1983)

地层	下降盘厚度 (m)	上升盘厚度 〔m 〕	差值	生长 指数	断层活动	描述
10	200	200	0	1.00	停止活动	
9	215	200	15	1. 08		
8	595	545	50	1. 09		断
7	540	435	105	1. 24	亦化垢敏	层
6	610	510	100	1. 20	又化则系	发
5	675	535	140	1. 26		育
4	300	228	72	1. 31		时
3	562	312	250	1.80	幅度最大	期
2	1234	1025	209	1. 20	开始活动	
1	400	400	0	1.00		

- 1、断面两侧的岩性条件
- ① 储层与对盘非渗透性岩层接触;
- ② 储层与对盘砂岩(渗透性岩层)接触;
- ③ 储层与对盘低渗透性岩层接触;
- ④ 储层与断裂带发育的非渗或低渗断层岩(墙)接触

完全封闭型 部分封闭型 不封闭型

2、断层面及两侧岩层的排驱压力

- 断层两侧岩层的排驱压力相同或接近----断 层不封闭;排驱压力差别大---断层封闭;
- 同时,某断层的封闭性不是一成不变的。
 当油气柱高度增加到某一值(最大高度)homax时
 油气可从断盘一侧油气藏中向另一侧运移或通过断层面向
 上倾方向运移。
- 若断面(断裂带)排驱压力>两侧岩层排驱压
 力--断层封闭;断面(断裂带)排驱压力<两侧岩层排驱
 压力--断层开启

油气柱达最大高度时,A点处毛管压力P_o=P_{dB},油气 通过断面向上运移,断层成为油气再运移通道。

通常认为:张性断裂----易造成开启性断层, 压扭性断裂----易造成封闭

性断层。

具体情况: 应视作用于断层面裂缝的压应力p的大 $P = \frac{H(\rho_r - \rho_w)}{100} \cos \theta$ $\rho_r - - 岩石密度, 10^3 kg/m^3$ $\rho_w - - w = - w = 10^3 kg/m^3$ $\theta - - w = - w = 10^3 kg/m^3$

一般而言,压应力>>岩石强度,断面裂缝封闭; 若压应力<岩石强度,断面裂缝开启。

4、断层活动强度

活动弱→破裂轻,裂隙不发育→封闭。 活动强烈→破碎严重、裂隙发育→开启;

5、断层产状与岩层产状配置关系

同向断层----封闭能力一般都较差; 反向断层(反向屋脊式)----封闭性通常较好。

封闭性断层:测井曲线上,断层面为非渗透性。

开启性断层:因断层和断裂破碎带具有渗透性:

● 砂泥岩剖面:测井曲线一般声波时差大,井径 扩大,密度和电阻率降低;

● 碳酸盐岩剖面: 低中子伽马、低 GR、低 R, 井 径扩大、声波时差大, 密度小。

声波时差大、密度小、声阻抗曲线明显的低异常

图 6-12 川东××井断层破碎带声阻抗曲线图 (1in=0.0254m)

断层不封闭

7. 断层两盘的流体性质及分布

对比断层两侧流体性质、油一水界面标高等可以判断断层封闭性。

若断层两盘流体性质差异,油-水界面高差悬殊 断层封闭(重要标志)

下辽河地区兴隆台油田相邻断块同层原油性质、

油水界面比较表 (据吴元燕, 1995)

断块 名称	代表井	相对 密度	粘度(50℃) mPa • s	凝固点 ℃	含蜡 量 %	油水界面 高度 m
兴42块	兴42井	0.8979	24. 33	-28	5.46	-2050
马7块	马7井	0.8468	6. 54	24	15.07	-2300

8. 钻井过程中的显示

开 ✓若发现钻井液漏失、井涌及油气显示等现象 启 ✓岩心有断层角砾岩;

性 ✓ 钻时减少

新 ✓ 岩屑中存在次生方解石、石英含量增高等现象

 ✓ 油气聚集期及之后继续活动的断层

